32 research outputs found

    PPS: Privacy-preserving statistics using RFID tags

    Get PDF
    As RFID applications are entering our daily life, many new security and privacy challenges arise. However, current research in RFID security focuses mainly on simple authentication and privacy-preserving identication. In this paper, we discuss the possibility of widening the scope of RFID security and privacy by introducing a new application scenario. The suggested application consists of computing statistics on private properties of individuals stored in RFID tags. The main requirement is to compute global statistics while preserving the privacy of individual readings. PPS assures the privacy of properties stored in each tag through the combination of homomorphic encryption and aggregation at the readers. Re-encryption is used to prevent tracking of users. The readers scan tags and forward the aggregate of their encrypted readings to the back-end server. The back-end server then decrypts the aggregates it receives and updates the global statistics accordingly. PPS is provably privacypreserving. Moreover, tags can be very simple since they are not required to perform any kind of computation, but only to store data

    Security and privacy in RFID systems

    Get PDF
    Vu que les tags RFID sont actuellement en phase de large déploiement dans le cadre de plusieurs applications (comme les paiements automatiques, le contrôle d'accès à distance, et la gestion des chaînes d approvisionnement), il est important de concevoir des protocoles de sécurité garantissant la protection de la vie privée des détenteurs de tags RFID. Or, la conception de ces protocoles est régie par les limitations en termes de puissance et de calcul de la technologie RFID, et par les modèles de sécurité qui sont à notre avis trop forts pour des systèmes aussi contraints que les tags RFID. De ce fait, on limite dans cette thèse le modèle de sécurité; en particulier, un adversaire ne peut pas observer toutes les interactions entre tags et lecteurs. Cette restriction est réaliste notamment dans le contexte de la gestion des chaînes d approvisionnement qui est l application cible de ce travail. Sous cette hypothèse, on présente quatre protocoles cryptographiques assurant une meilleure collaboration entre les différents partenaires de la chaîne d approvisionnement. D abord, on propose un protocole de transfert de propriété des tags RFID, qui garantit l authentification des tags en temps constant alors que les tags implémentent uniquement des algorithmes symétriques, et qui permet de vérifier l'authenticité de l origine des tags. Ensuite, on aborde le problème d'authenticité des produits en introduisant deux protocoles de sécurité qui permettent à un ensemble de vérificateurs de vérifier que des tags sans capacité de calcul ont emprunté des chemins valides dans la chaîne d approvisionnement. Le dernier résultat présenté dans cette thèse est un protocole d appariement d objets utilisant des tags sans capacité de calcul , qui vise l automatisation des inspections de sécurité dans la chaîne d approvisionnement lors du transport des produits dangereux. Les protocoles introduits dans cette thèse utilisent les courbes elliptiques et les couplages bilinéaires qui permettent la construction des algorithmes de signature et de chiffrement efficaces, et qui minimisent donc le stockage et le calcul dans les systèmes RFID. De plus, la sécurité de ces protocoles est démontrée sous des modèles formels bien définis qui prennent en compte les limitations et les contraintes des tags RFID, et les exigences strictes en termes de sécurité et de la protection de la vie privée des chaines d approvisionnement.While RFID systems are one of the key enablers helping the prototype of pervasive computer applications, the deployment of RFID technologies also comes with new privacy and security concerns ranging from people tracking and industrial espionage to produ ct cloning and denial of service. Cryptographic solutions to tackle these issues were in general challenged by the limited resources of RFID tags, and by the formalizations of RFID privacy that are believed to be too strong for such constrained devices. It follows that most of the existing RFID-based cryptographic schemes failed at ensuring tag privacy without sacrificing RFID scalability or RFID cost effectiveness. In this thesis, we therefore relax the existing definitions of tag privacy to bridge the gap between RFID privacy in theory and RFID privacy in practice, by assuming that an adversary cannot continuously monitor tags. Under this assumption, we are able to design sec ure and privacy preserving multi-party protocols for RFID-enabled supply chains. Namely, we propose a protocol for tag ownership transfer that features constant-time authentication while tags are only required to compute hash functions. Then, we tackle the problem of product genuineness verification by introducing two protocols for product tracking in the supply chain that rely on storage only tags. Finally, we present a solution for item matching that uses storage only tags and aims at the automation of safety inspections in the supply chain.The protocols presented in this manuscript rely on operations performed in subgroups of elliptic curves that allow for the construction of short encryptions and signatures, resulting in minimal storage requirements for RFID tags. Moreover, the privacy and the security of these protocols are proven under well defined formal models that take into account the computational limitations of RFID technology and the stringent privacy and security requirements of each targeted supply chain application.PARIS-Télécom ParisTech (751132302) / SudocSudocFranceF

    Online-Offline Homomorphic Signatures for Polynomial Functions

    Get PDF
    The advent of cloud computing has given rise to a plethora of work on verifiable delegation of computation. Homomorphic signatures are powerful tools that can be tailored for verifiable computation, as long as they are efficiently verifiable. The main advantages of homomorphic signatures for verifiable computation are twofold: \begin{inparaenum}[(i)] \item Any third party can verify the correctness of the delegated computation, \item and this third party is not required to have access to the dataset on which the computation was performed. \end{inparaenum} In this paper, we design a homomorphic signature suitable for multivariate polynomials of bounded degree, which draws upon the algebraic properties of \emph{eigenvectors} and \emph{leveled multilinear maps}. The proposed signature yields an efficient verification process (in an amortized sense) and supports online-offline signing. Furthermore, our signature is provably secure and its size grows only linearly with the degree of the evaluated polynomial

    Multi-Issuer Anonymous Credentials Without a Root Authority

    Get PDF
    The rise of blockchain technology has boosted interest in privacy-enhancing technologies, in particular, anonymous transaction authentication. Permissionless blockchains realize transaction anonymity through one-time pseudonyms, whereas permissioned blockchains leverage anonymous credentials. Earlier solutions of anonymous credentials assume a single issuer; as a result, they hide the identity of users but still reveal the identity of the issuer. A countermeasure is delegatable credentials, which support multiple issuers as long as a root authority exists. Assuming a root authority however, is unsuitable for blockchain technology and decentralized applications. This paper introduces a solution for anonymous credentials that guarantees user anonymity, even without a root authority. The proposed solution is secure in the universal composability framework and allows users to produce anonymous signatures that are logarithmic in the number of issuers and constant in the number of user attributes

    T-MATCH: Privacy-Preserving Item Matching for Storage-Only RFID Tags

    Get PDF
    RFID-based tag matching allows a reader Rk to determine whether two tags Ti and Tj store some attributes that jointly fulfill a boolean constraint. The challenge in designing a matching mechanism is tag privacy. While cheap tags are unable to perform any computation, matching has to be achieved without revealing the tags’ attributes. In this paper, we present T-MATCH, a protocol for secure and privacy preserving RFID tag matching. T-MATCH involves a pair of tags Ti and Tj , a reader Rk, and a backend server S. To ensure tag privacy against Rk and S, T-MATCH employs a new technique based on secure two-party computation that prevents Rk and S from disclosing tag attributes. For tag privacy against eavesdroppers, each tag Ti in T-MATCH stores an IND-CPA encryption of its attribute. Such an encryption allows Rk to update the state of Ti by merely re-encrypting Ti’s ciphertext. T-MATCH targets cheap tags that cannot perform any computation, but are only required to store 150 bytes

    Tracker: Security and Privacy for RFID-based Supply Chains

    Get PDF
    The counterfeiting of pharmaceutics or luxury objects is a major threat to supply chains today. As different facilities of a supply chain are distributed and difficult to monitor, malicious adversaries can inject fake objects into the supply chain. This paper presents Tracker, a protocol for object genuineness verification in RFID-based supply chains. More precisely, Tracker allows to securely identify which (legitimate) path an object/tag has taken through a supply chain. Tracker provides privacy: an adversary can neither learn details about an object\u27s path, nor can it trace and link objects in supply chain. Tracker\u27s security and privacy is based on an extension of polynomial signature techniques for run-time fault detection using homomorphic encryption. Contrary to related work, RFID tags in this paper are not required to perform \emph{any computation}, but only feature a few bytes of storage such as ordinary EPC Class 1 Gen 2 tags

    PUDA – Privacy and Unforgeability for Data Aggregation

    Get PDF
    Existing work on data collection and analysis for aggregation is mainly focused on confidentiality issues. That is, the untrusted Aggregator learns only the aggregation result without divulging individual data inputs. In this paper we extend the existing models with stronger security requirements. Apart from the privacy requirements with respect to the individual inputs, we ask for unforge- ability for the aggregate result. We first define the new security requirements of the model. We also instantiate a protocol for private and unforgeable aggregation for multiple independent users. I.e, multiple unsynchronized users owing to per- sonal sensitive information without interacting with each other, contribute their values in a secure way: The Aggregator learns the result of a function without learning individual values, and moreover, it constructs a proof that is forwarded to a verifier that will convince the latter for the correctness of the computation. Our protocol is provably secure in the random oracle model

    DualDory: Logarithmic-Verifier Linkable Ring Signatures through Preprocessing

    Get PDF
    A linkable ring signature allows a user to sign anonymously on behalf of a group while ensuring that multiple signatures from the same user are detected. Applications such as privacy-preserving e-voting and e-cash can leverage linkable ring signatures to significantly improve privacy and anonymity guarantees. To scale to systems involving large numbers of users, short signatures with fast verification are a must. Concretely efficient ring signatures currently rely on a trusted authority maintaining a master secret, or follow an accumulator-based approach that requires a trusted setup. In this work, we construct the first linkable ring signature with both logarithmic signature size and verification that does not require any trusted mechanism. Our scheme, which relies on discrete-log type assumptions and bilinear maps, improves upon a recent concise ring signature called DualRing by integrating improved preprocessing arguments to reduce the verification time from linear to logarithmic in the size of the ring. Our ring signature allows signatures to be linked based on what message is signed, ranging from linking signatures on any message to only signatures on the same message. We provide benchmarks for our scheme and prove its security under standard assumptions. The proposed linkable ring signature is particularly relevant to use cases that require privacy-preserving enforcement of threshold policies in a fully decentralized context, and e-voting

    Anonymous Transactions with Revocation and Auditing in Hyperledger Fabric

    Get PDF
    In permissioned blockchain systems, participants are admitted to the network by receiving a credential from a certification authority. Each transaction processed by the network is required to be authorized by a valid participant who authenticates via her credential. Use case settings where privacy is a concern thus require proper privacy-preserving authentication and authorization mechanisms. Anonymous credential schemes allow a user to authenticate while showing only those attributes necessary in a given setting. This makes them a great tool for authorizing transactions in permissioned blockchain systems based on the user\u27s attributes. In most setups, there is one distinct certification authority for each organization in the network. Consequently, the use of plain anonymous credential schemes still leaks the association of a user to the organization that issued her credentials. Camenisch, Drijvers and Dubovitskaya (CCS 2017) therefore suggest the use of a delegatable anonymous credential scheme to also hide that remaining piece of information. In this paper, we propose the revocation and auditability - two functionalities that are necessary for real-world adoption - and integrate them into the scheme. We present a complete protocol, its security definition and the proof, and provide its open-source implementation. Our distributed-setting performance measurements show that the integration of the scheme with Hyperledger Fabric, while incurring an overhead in comparison to the less privacy-preserving solutions, is practical for settings with stringent privacy requirements

    Privacy-preserving auditable token payments in a permissioned blockchain system

    Get PDF
    Token management systems were the first application of blockchain technology and are still the most widely used one. Early implementations such as Bitcoin or Ethereum provide virtually no privacy beyond basic pseudonymity: all transactions are written in plain to the blockchain, which makes them perfectly linkable and traceable. Several more recent blockchain systems, such as Monero or Zerocash, implement improved levels of privacy. Most of these systems target the permissionless setting, just like Bitcoin. Many practical scenarios, in contrast, require token systems to be permissioned, binding the tokens to user identities instead of pseudonymous addresses, and also requiring auditing functionality in order to satisfy regulation such as AML/KYC. We present a privacy-preserving token management system that is designed for permissioned blockchain systems and supports fine-grained auditing. The scheme is secure under computational assumptions in bilinear groups, in the random-oracle model
    corecore